Skip to content

Do Arithmatic on sparse vectors without destroying the sparsity. Note that only multiplication and division preserves the default value.

Usage

sparse_division_scalar(x, val)

sparse_multiplication_scalar(x, val)

sparse_addition_scalar(x, val)

sparse_subtraction_scalar(x, val)

Arguments

x

A sparse vector.

val

A single numeric value.

Value

A sparse vector of same type.

Details

No checking of the inputs are being done.

sparse_division_scalar() and sparse_multiplication_scalar() are the most used ones, as they preserve the default, which is often what you want to do.

sparse_division_scalar() always produces double vectors, regardless of whether they could be represented as integers or not. Expect when val = 1 as the input is returned unchanged, or val = NA as the input returned will be NA or the appropiate type.

Examples

x_sparse <- sparse_double(c(pi, 5, 0.1), c(2, 5, 10), 10)

sparse_division_scalar(x_sparse, 2)
#>  [1] 0.000000 1.570796 0.000000 0.000000 2.500000 0.000000 0.000000
#>  [8] 0.000000 0.000000 0.050000
sparse_multiplication_scalar(x_sparse, 2)
#>  [1]  0.000000  6.283185  0.000000  0.000000 10.000000  0.000000
#>  [7]  0.000000  0.000000  0.000000  0.200000
sparse_addition_scalar(x_sparse, 2)
#>  [1] 2.000000 5.141593 2.000000 2.000000 7.000000 2.000000 2.000000
#>  [8] 2.000000 2.000000 2.100000
sparse_subtraction_scalar(x_sparse, 2)
#>  [1] -2.000000  1.141593 -2.000000 -2.000000  3.000000 -2.000000
#>  [7] -2.000000 -2.000000 -2.000000 -1.900000